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This paper discusses the simplest first passage time problems for random walks 
and diffusion processes on a line segment. When a diffusing particle moves in a 
time-varying field, use of the adjoint equation does not  lead to any sim- 
plification in the calculation of moments  of the first passage time as is the case 
for diffusion in a time-invariant field. We show that for a discrete random walk 
in the presence of a sinusoidally varying field there is a resonant frequency c0* 
for which the mean  residence time on the line segment is a minimum. It is 
shown that  for a random walk on a line segment of length L the mean  residence 
time goes like L 2 for large L when m r o)*, but  when co = e)* the dependence is 
proportional to L. The results of our simulation are numerical, but can be 
regarded as exact. Qualitatively similar results are shown to hold for diffusion 
processes by a perturbation expansion in powers of a dimensionless velocity. 
These results are extended to higher values of this parameter  by a numerical 
solution of the forward equation. 

KEY WORDS: Random walks; diffusion processes; first passage times; 
residence times; diffusive coherence. 

1. I N T R O D U C T I O N  

There has been considerable recent interest in pulsed-field gel electro- 
phoresis, in particular for the separation of large DNA molecules/1 3) 
Similar ideas have also arisen with respect to other types of 
chromatographic processes. (4) The analysis of such kinds of experiments 
requires an understanding of both ordinary diffusion and reptation in a 
time-dependent field. It is relatively straightforward to calculate transport 
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properties for such fields provided that the underlying substrate is known 
to be both infinite and spatially homogeneous. A property closely related 
to diffusive transport in a medium is the first passage time of a particle to a 
barrier, which is known as the elution time in the terminology of 
chromatographic systems. The theory of first passage times is now a 
classical one whose simplest properties have been worked out in great 
detail for time-homogeneous Markov processes/5'6) A major result in this 
theory is that the equation adjoint to the evolution equation simplifies the 
calculation of moments of the first passage time. In one dimension, use of 
the adjoint equation leads to a solution in closed form for moments of the 
first passage time for both diffusion processes and nearest neighbor random 
walks. 

In the present paper we calculate some properties of the simplest first 
passage time problem for both a random walk on a lattice and a diffusion 
process in a time-dependent field. The analysis will be restricted to the case 
of a one-dimensional, sinusoidally oscillating field and we will focus on 
statistical properties of the residence time on a line segment. Our results 
indicate that the oscillating field can create a form of coherent motion 
capable of reducing the mean residence time by a significant amount. This 
coherence effect is accompanied by a corresponding reduction of the 
variance. A way to quantify the amount of oscillation-induced coherence is 
through the dependence of the mean residence time on the length L of the 
interval. We will show that the dependence of the mean residence time is 
proportional to L 2 for large L when the sinusoidal field is not at a par- 
ticular frequency, co*, that will be termed the resonant frequency. At that 
frequency the dependence changes to a proportionality to the first power of 
L, a dependence that is characteristic of a random walk in the presence of a 
uniform field. 

Three techniques for analyzing time-dependent first passage times will 
be used. The lattice random walk will be studied by the method of exact 
enumeration, (7) which allows a simple calculation of many properties of 
random walks with steps to nearest neighbors only. This method, however, 
is available only for discrete random walks. In the case of diffusion 
processes one can convert the partial differential equation together with the 
appropriate set of boundary conditions into an initial-value problem for an 
infinite set of ordinary differential equations with time-dependent coef- 
ficients. When the amplitude of the oscillatory field is sufficiently small an 
approximate solution to these equations can be found by means of a 
perturbation expansion. Finally, we use a numerical solution of the time- 
inhomogeneous diffusion equation to check qualitative conclusions of our 
analyses both for the discrete and continuum versions of the problem. 
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2. T H E  LATTICE R A N D O M  W A L K  

The system to be studied consists of a discrete-time random walk on a 
line segment (0, L), the points r = 0  and r=L being absorbing. Our 
analysis will make use of the forward equations for pn(r] ro), which is the 
probability that the random walker is at lattice site r at step n, given the 
initial position r0. The equations satisfied by these probabilities are given 
by 

pn+l(r)=l[l+e(n)]pn(r-1)+�89 (1) 

where, for convenience, we have surpressed the dependence on ro. These 
equations are to be solved subject to the boundary conditions p , (0 )=  
pn(L) = 0. In most of the following analysis we will analyze results for the 
particular initial condition 

po(r) = I / (L-  1) (2) 

The qualitative conclusions following from this choice will be seen to agree, 
with only minor modifications, with those from the more specific initial 
condition po(rlro)=6r, ro. We will mainly be interested in the survival 
probability S(n]ro), defined by 

L - - 1  

S(nlro)= ~ p,(rlro) (3) 
r = l  

We denote the survival probability by S(n) when it corresponds to the 
particular initial condition in Eq. (2). The j th  moment of the residence time 
can be expressed in terms of S(n) as 

(nJ )=j  ~ n j 1S(n) (4) 
n = l  

The function S(n) is easy to compute numerically from the results of 
the exact enumeration calculation, and, when found, is given exactly within 
the precision of the computer numerics. Briefly stated, the exact 
enumeration method associates a register with each site of the lattice. The 
initial state is one in which the registers corresponding to sites 1, 2,..., L -  1 
are assigned a value 1 and the registers for sites 0 and L have a 0. The 
registers for these absorbing points remain unchanged during the course of 
the random walk. At the first step the 1 in register j is divided into two 
parts, l [ 1 - e ( n ) ]  and �89 which are assigned, respectively, to 
registers j + 1 and j -  1 for the following step when site j is not surrounded 
by two absorbing sites. When j =  1, so that one of the adjacent sites is a 
trap, �89 is added to register 2 (provided that L > 2 )  and the 
remaining amount is lost. A similar computation is made for register L -  1. 
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After the first step the procedure is iterated in exactly the same way, except 
that one takes the contents of counter j at step n, Cj(n), and adds 
�89 + e(n)] Cj(n) to Cj+ l(n + 1) and �89 - e ( n ) ]  C/(n)to Cj_ l(n + 1) forj a 
strictly interior point. Finally, the function S(n) is written in terms of the 
Cj(n) as 

/Y S(n) = Cj(n) Cj(0) (5) 
j 1 

Equation (1) is the evolution equation corresponding to a specific 
biassing field e(n). In what follows we will concentrate on the specific 
choice 

e(n) = e sin(con) (6) 

where the parameter co will be restricted to the interval (0, rr) to avoid 
aliasing. The first point addressed in our study is the behavior of the mean 
residence time, (n(co)),  considered as a function of frequency co. Typical 
results for this function for L = 50, 100, and 200 are shown in Fig. 1. The 
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Fig. 1. The  m e a n  first passage  time, { n ( o ) } ,  plotted as a funct ion of  e) for a s inusoidal  field 
act ing on a r a n d o m  w a l k  on a lattice segment  in one  d imens ion .  The  curves  s h o w n  are for 
several  va lues  of  the ampl i tude  a: e = 0.05 ( O ), e = 0.1 ( O ), e = 0.3 ( V ). The  segment  lengths 
are (a)  L = 50, (b)  L = 100, (c) L = 200. 
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Fig. 1 (continued) 
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striking feature of these results is the appearance of a minimum at the 
resonant frequency co*, which depends on L and e. It is evident that by 
operating the field at the frequency co* one can obtain a substantial reduc- 
tion in the mean residence time. The reason for the minimum residence 
time lies in coherent motion induced by the sine function in Eq. (6). A ran- 
dom walker will initially tend to move in the + r  direction because sin(con) 
is initially positive, thereby enhancing the early absorption at r = L over 
the unbiased case. When the field reverses, the absorption is enhanced at 
r = 0. The process continues in this fashion, but since random walkers near 
the edges have been depleted, the diffusion mechanism takes on increased 
importance at later times. When co is very small, the absorption enhan- 
cement must also be small, which leaves the diffusive absorption as a 
dominant effect over the entire time span. When co is large, there is an 
initial spurt of absorption, but after random walkers near the ends of the 
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Fig. 2. The resonant frequency, co*, plotted as a function of the size of the lattice segment 
for several values of the amplitude e: e = 0.05 ( ~ ) ,  0.1 (O) ,  0.3 (V) ,  and 0.5 ([]) .  
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interval have been absorbed, the kinetics of the absorption process is again 
governed by diffusion. It is instructive to examine the behavior of the 
variance a2(n(co))= {n2(co)>-  {n(co)> 2 as a function of co. This is also 
seen to have a minimum near co*. We have also examined the behavior of 
the resonant frequency co* as a function of L, finding that 

co*(L) ~ 1/L (7) 

for large L, as shown in Fig. 2. When e < 0.5, co* is very close to being 
proportional to ~. 

Somewhat more interesting than Eq. (7) is the dependence of 
(n (L lco ) )  as a function of the interval length for fixed frequency. When 
co = co* one finds that 

<n(Llco) >~ L 2 (8) 

but when co = co* the relation changes to a first power dependence: 

(n(Llco*) > ~ Z (9) 

This dependence is illustrated in Fig. 3. Since the decrease in mean 
residence time is principally due to the time dependence of the average 
displacement, one expects that an increase in the amplitude of the bias 
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Fig. 3. Dependence of the min imum average residence time <n(o.~*)> on the lattice size, L, 
for several values of e; e = 0.05 ( �9 0.1 ( ~ ) ,  and 0.3 (V).  The figures indicate that <n(c~*)) 
varies as the first power of L when L > 1. 
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Fig. 4. The m e a n  residence time, (n(~o*)) ,  as a funct ion of the bias pa rame te r  e for a sys tem 
size, L = 50. 
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r a n d o m  walk,  for e = 0.3, 09 = 8 x 10-4,  and  L = 200. 



parameter e will lead to a decrease in the mean residence time. Figure 4 
shows the form taken by this function for L = 50. A typical plot of S(n) as 
a function of step number is given in Fig. 5, showing that the oscillatory 
field is not damped out. Further numerical calculations indicate that the 
oscillations become increasingly evident as o) approaches e)*. 

A number of points of lesser importance were also investigated. We 
looked at ( n )  as a function of the initial position of the random walker ro, 
rather than for the uniform initial condition given in Eq. (2). Some results 
of this are shown in Fig. 6. The curves in Fig. 6a of the mean residence time 
as a function of initial position demonstrate that in the pure diffusion limit 
the mean residence time is symmetric with respect to the center of the inter- 
val. As the frequency is increased, the location of the maximum is shifted 
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100 

Fig. 6a. A plot of the mean residence time, (n(~o)), as a function of the initial position of a 
random walker for s=0 .3 ,  L =  100, and several values of(o; c0=0 (O),  10 4 ( ~ ) ,  10-3 (V), 
and 10 -2 ( 0 ) .  

822/51/1-2-15 
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Fig. 6b. The mean  residence t ime plotted as a function of  r for two different initial posit ions;  
r 0 = 2 0  ( � 9  and 5 0  ( O ) .  The remaining parameters  are e = 0 .3  a n d  L = 1 0 0 .  

further and to the left of the interval. This serves to demonstrate that the 
initial surge is the most important factor in determining the residence time. 
Figure 6b shows that the behavior of ( n )  as a function of frequency in the 
neighborhood of the minimum is only slightly affected by the starting 
point. The difference becomes more pronounced at higher frequencies. 

In order to examine the initial biased motion a little more closely, we 
considered a generalization of the sinusoid in Eq. (6) by including a phase 
angle in the sine function, 

e(n) = sin(m# + ~0) (10) 

Some results of the calculation are shown in Fig. 7, from which it is evident 
that the phase is significant in determining the mean residence time at very 
low frequencies. However, because an increase in frequency switches the 
transition probabilities at a faster rate, the effect of the initial phase tends 



First Passage Time Problems 225 

i I I 

400 ~ P 
/ 

t 

< n(w,q5)> . . . . .  

I 
o /  - �9 

1o 2 

<7> 
Fig. 7. Graphs of the mean residence time, <n(~o, ~b)>, as a function of the phase, ~b, for 
different values of m. The segment length is L = 50 and e = 0.3. The curves shown are for 
e)=0 (O), =10 3 (O), =10 -2 ([]), =5x  10 -2 (V). The greatest effects are seen to occur 
at the lowest values of the frequency, while at high frequencies there is a cancellation effect. 

to wash out. I t  is nevertheless  interes t ing to note  tha t  when one averages 
over  (p, the coherence  effect remains,  as is evident  f rom Fig. 8, showing the 
mean  residence t ime for <r(co, q~)> averaged  over  (p. The  m i n i m u m  is no t  
near ly  as p r o n o u n c e d  as in the case q~ = 0. F igure  9 shows tha t  when the 
m i n i m u m  value of  <r (e)*)> is averaged  over  q~ it re ta ins  its p ropo r t i ona l i t y  
to the first power  of L. 

3. D I F F U S I O N  P R O C E S S E S  

In  this sect ion we analyze  some aspects  of  first passage t ime p rob lems  
in a t ime-dependen t  field for diffusion in a con t inuum.  Again,  we restr ict  
ourselves to one d imens ion ,  cons ider ing  only the case of diffusion on  a line 
segment,  whose ends x = 0 and  x = L are assumed  to be abso rb ing  points .  
The  results  of this analysis  will be found  to resemble  closely those found in 

the case of la t t ice r a n d o m  walks.  As in the case of  the discrete r a n d o m  
walk,  we canno t  find a readi ly  c o m p u t a b l e  so lu t ion  to the p rob lem,  but  it 
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Fig. 8. Curves of the phase averaged mean residence time, (n(og, ~b) )~ plotted as a function 
of frequency for L =  100 (O) and L =  150 (V). 

is possible to use perturbation theory when the field is small in an 
appropriate sense. In the next section we present results based on a 
numerical solution of the diffusion equation for the case in which pertur- 
bation theory is not appropriate. 

We denote the probability density for the position of the diffusing 
particle by p(x,  t), which is assumed to satisfy 

@ / a t  = Da~p/ax  ~ - v( t) @ / a x  (11) 

for a general time-dependent field v(t) and a diffusion constant D. We will 
convert this partial differential equation into an infinite set of ordinary 
differential equations, but it is convenient first to transform Eq. (11) into 
dimensionless form. We do this by setting v(t)= Vg(t), where V is a 
constant with the dimensions of velocity and g(t)  is a dimensionless 
function that specifies the time-dependent behavior of the field. Equation 
(11) can be rewritten in dimensionless form by defining the parameters 

= Dt /L  2, ~ = L V/D, y = x / L  (12) 
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Fig. 9. A plot of the phase averaged mean residence time at the resonant frequency, as a 
function of L. The fit to a straight line is evident. 

so that z is the dimensionless time, e is a measure of the amplitude of the 
time-dependent field, and y, the dimensionless length, varies between 0 
and 1. These parameters allow us to rewrite Eq. (11) as 

~p/c3z = c3 2p/t~y2 - eg( Lz / V) 3p/ c3y ( 13 ) 

which is to be solved subject to the absorbing boundary conditions 

p(0, z ) =  p(1, z ) = 0  (14) 

and the initial condition p(y, O) = 1. 
In order to transform Eq. (13) into a set of ordinary differential 

equations, we expand p(y, ~) in a Fourier series 

p(y, z) = ~ a,(~) sin(tory) (15) 
n = l  

which clearly satisfies the boundary conditions in Eq. (14). On substituting 
this ansatz into Eq. (13), we find that the a,(z) satisfy the set of equations 

((l .+Tz2n2a.)sin(~ny)=-eh(z) ~ nanCOS(~ny) (16) 
n = l  n = l  
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where, for simplicity, we have set h(~)=4g(L2"c/D). However, since the 
{sin(=ny)} form a set of orthogonal functions over (0, 1), we can simplify 
these equations by multiplying both sides by sin(nny) and integrating with 
respect to y. In this way we find that the a.  are solutions to 

5. + n2n2a. = --eh(T) ~ Gnmam (17) 
m = l  

in which the constants G.,. are found to be 

G.m = n m / ( n  2 - m 2) for n + m odd 
(18) 

= 0  for n + m e v e n  

The survival time distribution S(z) can be found from the an(T) in terms of 
an infinite series 

S ( O =  p(y, r)dy= a2.+l(z)/(2n+ 1) (19) 

It will be convenient to express the mean residence time ( % )  in terms of 
the Laplace transforms of an(r) with respect to z. The transform of a.(~) 
will be denoted by ft.(s), in which case the expression for (Zr) can be writ- 
ten as 

io ( z r )= S(z)dv= fiz.+ 1(0)/(2n + 1) (20i 
n = 0  

As in the discrete case, we present results for diffusion in a sinusoidally 
varying field by choosing 

g(t) = sin(~o o t) (21) 

To keep the formulation completely dimensionless, we define a dimen- 
sionless frequency ~o in terms of o~ o by 

gO = o~oL Z/D (22) 

We will assume that the amplitude of the field is small in the sense that 
e ~ 1 and expand the functions a.(~) in the perturbation series 

a . (v )=  ~ a(~J)(~)e j (23) 
j = 0  

Successive terms in the perturbation series satisfy the equations 

h(~ ~ + zcZn2a~ ~ = 0 

(24) 
a~" + 1)+ ~an2a~,~ + 1)= -sin(coy) ~ G.ga~ m' 

j = l  
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In Eq. (20) we expressed the mean residence time in terms of the Laplace 
transforms of the an(O, which makes it attractive to consider this last set of 
equations in the transform domain. Since the sine function can be written 
as a difference of exponential functions, we transform Eq. (24) into the 
algebraic set of equations 

~(0) 
n - -  

~(m a n + 1)(s ) = - -  

2 sin(nny) 
S "q- 7~2n 2 

i 
Gnl[dl lm)(s  - i0)) -- dt}m)(s + /CO)] 

S-}- g2H2 /= 1 

(25) 

The towest order terms in the perturbation expansion are found to be 

20) G,I sin(nlyo) 
/ '  (S -+- 7r212) 2 -'1- 0)2 L I ( I ) ( s )  = S+l~2n2t=l 

C/(2) (S) = S +20)2T~2n2 l~= 1 G. t  k ~= 1 Gtk  sin(nkyo')__s + n 2 k  2 

3s + 2n2(2/2 + k 2) 
• 

[-(S + g212)2 + 0) 2 ] [-(S + g2k2)2 + 40)23 

(26) 

The mean residence time (Zr) can also be written in terms of a pertur- 
bation series, 

( r r )  = ~ ( r j )  d (27) 
j=O 

in which the lowest order term is ( % ) =  y o ( 1 -  yo)/2. 
Figure 10a shows some curves of ( ~ ) / ( ~ o )  as a function of 0) for 

different values of Xo. It is evident from the form of Eq. (26) that the first- 
order terms are antisymmetric around Y0 = 0.5. Therefore, the equivalent 
curves for Yo = 0.9 and 0.8 would just be the negative of those for Yo = 0.1 
and 0.2, respectively, and (T~) for Yo = 0.5 is identically equal to zero. The 
decrease in the mean residence time for Yo > 0.5 is expected because of the 
initial surge of particles toward the right-hand side of the iiaterval. 
Figure 10b shows some curves of ( z 2 ) / ( z 0 )  for different initial positions. 
These are always negative, which is in qualitative agreement with our 
lattice calculations. It is interesting to note that the actual magnitudes of 
the normalized moments are quite small, suggesting that the perturbation 
expansion is valid for e values as high as of the order of 1. 

Finally, in order to check that qualitative properties derived from our 
lattice calculations and the perturbation expansion apply more generally, 
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Fig. 10a. Graphs of ( r  for diffusion in a sinusoida] field as a function of w for dif- 
ferent values of the starting point Y0- These curves are drawn for Yo < 0+5. The corresponding 
curves for Yo > 0.5 are the negatives of those shown here. 
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negative for all starting points, 
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Fig. 11. Typical curves of p(y, r) as a function of z for different values of y. These show that 
the most noticeable changes in the probability density occur near the trapping points. 

we solved the time-dependent diffusion equation using the Crank -  
Nieholson method for different values of the parameters. Figure 11 shows 
some curves of p(y, ~) corresponding to the initial condition p(y, O)= 1. 
These show that the effects of the field are strongest at the edges, where, of 
course, the probabili ty is most  readily strongly affected by the absorbing 
points, and tends therefore to most  strongly reflect the influence of the 
oscillating field. 

4. D I S C U S S I O N  

We have analyzed the simplest examples of random walks and 
diffusion on a line segment, subjected to a sinusoidal field. Much of our 
calculations are numerical, since there are no tools analogous to the 
adjoint equation that proves so useful in the analysis of t ime-homogeneous 
Markov  processes. We have shown that a sinusoidal field induces coherent 
motion that tends to reduce the residence time on the line segment. This, 
however, has not been proved in generality, although our results strongly 
suggest the truth of the assertion. The phenomenon persists when there is a 

822/51/1-2-16 
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constant field in addition to the sinusoidal one. This may be applicable to 
the improvement of the resolution of electrophoretic systems for the 
separation of proteins, since the application of a sinusoidal field can 
amplify differences in the speed of two proteins if the frequency is properly 
chosen. We have carried out calculations of the properties of diffusive 
motion in a randomly time-dependent field, but there do not appear to be 
any significant changes induced by such a field. 

It is interesting to speculate on the effects of a sinusoidal field in the 
so-called trapping problem. (8) The one firmly established result in this area 
is the long-time limit of the survival probability 

In S (  t ) ~ - a t  D/( D + 2) (28) 

due to Donsker and Varadhan, (9) where a is a constant. Can an oscillating 
field change this? Our feeling is that it cannot, because the resonant fre- 
quency applies to a single length in one dimension, whereas the classical 
statement of the trapping problem involves a complete spectrum of possible 
lengths. On the other hand, a sinusoidal field may have a considerable 
influence on trapping kinetics at early times. This remains to be explored, 
as does the effects of time-dependent fields in dimensions greater than 1. 
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